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SUMMARY

A solution is obtained for a complete temperature history and pro-

file of a sinusoidally heated flat plate with constant thermal and elec-

trical properties and insulated at one surface. The magnitudes of the

uniform temperature oscillations at both surfaces of the plate, caused

by the sinusoidal heat source, are calculated from the solution by a

digital computer and are presented in a graphical form as functions of

frequency and heat-transfer parameters.

The analysis is valid for thin_ long tubes heated by alternating

current. Magnitudes of uniform surface temperature oscillations are

given in terms of heat flux in a table form, covering the range of vari-

ables pertinent to the boiling-heat-transfer field. It is shown that,

at high heat fluxes, alternating-current heating can result in large

surface temperature variations.

INTRODUCTION

The emphasis in recent heat-transfer investigations has been on

achieving higher heat fluxes. An example is the field of boiling heat

transfer where heat fluxes in excess of i0 7 Btu/(hr)(sq ft) have been

obtained by passing high electrical currents through test elements.

Electrical heating is commonly used because of the general ease and ac-

curacy with which the electrical power may be controlled and recorded.

In heat-transfer studies, some knowledge of the temperature of the

heat-transfer surface is required. This has been accomplished with

varying degrees of success by measuring the heat-transfer surface tem-

perature directly or, more commonly, by measuring the temperature of

some point within the wall and then computing the temperature drop

through the wall.



Direct electric current will produce a constant heat generation
within the test-section wall, while alternating current will result in a
uniform, but periodically oscillating, heat source. This periodic heat
source in turn causes a periodic or cyclic temperature variation in the
wall. Manytemperature recorders are sensitive only to frequencies much
lower than those of the readily available alternating current, giving
only meantemperatures and not the temperature variations due to the os-
cillatory heating source. However, at high heat fluxes these variations
may becomeof large magnitude and therefore have an important effect on
the heat-transfer process.

That neglecting the wall temperature variations resulting from
alternating-current heating could result in an unexpected error was
first suggested in reference i, in which an analysis was madeof a sinus-
oidally heated flat plate. Using the Laplace transformation method, the
authors obtained a transfer function, the real part of which was used to
determine the amplitudes of the uniform temperature oscillations. Their
solution I is in a closed form for the amplitudes of the uniform tempera-
ture variations, but does not describe the temperature history.

Bertolotti, et al. (ref. 2) in a recent boiling study showedthat
alternating-current heating could appreciably affect experimental re-
sults. Their conclusion was based on an analysis incorporating the as-
sumption of infinite conductivity of the wall, which resulted in a sim-
plified solution for the amplitudes of the uniform temperature fluctua-
tions. The assumption was not substantiated.

An expression is derived herein for the complete temperature his-
tory and profile of a sinusoidaliy heated flat plate with constant ther-
mal and electrical properties and with one insulated surface. From this
solution the magnitudes of the uniform temperature oscillations due to
alternating-current heating were calculated by meansof an IBM 704 di-
gital computer. Thesemagnitudes are presented in graphical form as
functions of a dimensionless frequency and a heat-transfer parameter
(Biot modulus). A comparison is madebetween the magnitudes obtained
herein and those reported in reference i, and the validity of the as-
sumption used in reference 2 is tested.
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ANALYSIS

Assumptions and Solution

When alternating-current is passed through the walls of a tube, the

heat generated per unit volume per unit time is, by Ohm's law,

iThe constant B defined in the solution of ref. i (eq. Ill-A-iS)

should read

B = [_/_(cosh _ sin A/_ + sinh _/_ cos _/_) + h sinh _/_ sin _/_]
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(All symbols are defined in appendix A.) The imposed sinusoidal (i.e.,

alternating) current i is given by

i = -_ Ief f sin _T

where Ief f is equal in magnitude to the steady current that would

cause the same average heating as the varying current actually existing.

Hence,

q"'= 2Ie2ffR _(_!n2__2)L

(I)

By defining the mean heat-transfer area of the tube as

andsinceq- equationel)reduces to

q,,, = _ sin2_0T

_(r o + ri)L

(2)

If the ratio of the outer to inner radii of the tube is smaller

than 1.4, the tube may be represented by a flat plate with a resulting

error of less than i percent (ref. Z). Hence, consider a flat plate

with unidirectional heat flow (negligible end effects), insulated at one

surface and rejecting heat at the other. The plate is heated by alter-

nating current and is assumed to have constant thermal and electrical

properties. Thus, the differential equation for the temperature of the

plate is:

_t 82t (3)
pCp_ = k _ + q'"

Substituting equation (2) in equation (5) and rearranging yield

8x 2 k _-_ = " _ sin2_T (4)

By postulating that the outer surface (x = O) is insulated and that

all the heat is transferred at the inner surface (x _ Z), the boundary

conditions can be written as:



and

_t 0TM

_x = 0 at x --

8t _ h(tz-k_ - t) at x=

for T _ 0

The initial condition is obtained by imposing thermal equilibrium at

T = O. Therefore,

t - t = 0 at T = 0 for all x
0o

Introducing the following dimensionless parameters:

(t - t_)k

T* = (q/A)_ x* = x/_

h* = hZ/k

!

and substituting in equation (4) give

(s)

with boundary conditions

ST*
x_ = 0

_= -h'T*

at

at

for

and initial condition

T* = 0 at _* = 0 for all x*

As shown in detail in appendix B, the solution is:

• * _ 0
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T*(x*,_*) = 2

h n sin 2)x n + ?'n

n=l

_ sin 2_* - e
n

(s)

where hn are the eigenva!ues of the characteristic equation

h tan h = h* (V)

The first few roots of equation (7) are given in table I for a number of

values of h*.

By means of equation (6), it is thus possible to determine the tem-

perature history at any location in the wall as well as the temperature

profile of the wall at any given time.

Applicability of Solution

Consider a typical temperature history curve as shown in figure I

resulting from equation (6) for an arbitrary set of parameters. This

curve clearly indicates the superimposed sinusoidal effect of alternating-

current heating on the temperature history obtained in a flat plate with

constant heat generation. The time parameter required for the mean tem-

perature parameter to reach 99 percent of the value at T* = _ is the

same for alternating- and direct-current heating. This is also true for

the mean value of the temperature parameter in the steady-state region.

Hence, to evaluate the mean temperature, an equivalent constant heat

generation may be assumed. As shown in appendix B, the solution is

T_ = h_ + 1 x .2 _ sin In -h2nT*/_0*)e)xn _ sin 27, n + _n

n=l

(BI7)

By letting T* _ _ this solution further reduces to

i i x.2

T_ = h-_ + 2 2 (s)
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where T_ is the temperature parameter resulting from constant heat

generation.

To determine the transient temperature in a plate heated by an al-

ternating current, it becomes necessary to use equation (6). Moreover,

equation (6) can be used to obtain the steady-state oscillatory part of

the temperature history by letting the time parameter T* approach in-

finity, thus eliminating the exponential terms (the transient part) in

the solution. Differentiation of this reduced solution yields the mini-

mums and maximums of the steady-state cyclic portion of the temperature

history. The differences of these maximum and minimum temperature pa-

rameters are then the magnitudes of the uniform temperature oscillations

resulting from alternating-current heating.

!

RESULTS AND DISCUSSION

Transient Temperature Response

Transient temperature parameters were calculated from equation (6)

for several values of h* and _* for both surfaces. The results

could not be presented with a single family of curves. Typical tran-

sient temperature parameters at the two surfaces, as obtained from equa-

tion (6) for a given set of parameters (h* = 0. i, _* = i), are shown in

figure 2. The transients are almost identical at both surfaces for

small values of h*_ but begin to deviate increasingly from each other

as h* increases.

Magnitudes of Uniform Temperature Oscillations

The magnitudes of the sinusoidal temperature oscillations at the

surfaces were calculated by the aforementioned method (letting T* _

in eq. (6)), using an IBM 704 digital computer, for a wide range of di-

mensionless parameters h* and _*. These magnitudes are expressed in

terms of dimensionless temperature differences defined by

ZET* = T* - T*. - (tmax - tmin)k (9)

max mln (q/A)Z

The results are plotted in figure 3. A maximum of six terms was used

in evaluating the series solution (eq. (6)), and it was found that the

last term used in the series was always less than 0.001 percent of the

total temperature difference AT*.

The magnitudes of the temperature oscillations at the insulated

surface (x* = O) are shown in figure 3(a) as a function of frequency

and heat-transfer parameters. Figure 3(b) presents similar results for
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the heat-transfer surface (x* _ i). The results agree with those of

reference i, which were obtained by a different mathematical technique.

It should be noted that the magnitudes of the temperature oscillations

as defined herein by equation (9) are numerically twice the amplitudes

of reference i. It can be seen from figure 3 that the temperature dif-

ference parameter reaches an asymptotic value for a given Blot modulus

as the frequency parameter becomes small. However_ these values are not

the same at the two surfaces. The relation between the asymptotic values

of the temperature difference parameters at the two surfaces can be ob-

tained empirically from figures 3(a) and (b) and may be expressed by

(AT*)x*=O h*

: I + (io)

Equation (i0) indicates that the magnitudes of the temperature fluctua-

tions do not vary significantly across the plate for small values of

h*. As the Blot modulus h* increases_ the position in the plate (x*

value) becomes increasingly important. Figure 3 also shows that an in-

crease in w_ll thickness, frequency parameter, or Blot modulus will de-

crease the temperature difference parameter.

Approximate Solution

If infinite conductivity of the plate is assumed, the problem re-

duces to that of an ordinary differential equation. The solution_ given

in reference 2, in dimensionless' parameters becomes

(tmax - tmin)k 2
_ (ii)

Vh. , +

This simplified solution is presented in graphical form in figure 4 for

a wide range of _* and h*. A comparison of equations (6) and (ii)

is given in figure 5_ which tests the validity of the previous assump-

tion. It is seen from figures 5(a) and (b) that equation (ii) will

yield satisfactory results for values of h* < 0.i at all values of

_.

Application of Results to Heat-Transfer Studies

In boiling investigations as well as in liquid metals studies_ and

in "burnout" testing in particular, very high heat fluxes are normally

encountered. Since resistive heating is often preferred in the boiling

studies_ the designer of the experimental apparatus is faced with the

selection of alternating or direct current as the source of power. The
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utilization of direct-current heating could result in higher cost and

difficult instrumentation, while the use of alternating current could

induce large surface temperature variations.

In table II_ the magnitudes of the uniform temperature oscillations

at the heat-transfer surface due to alternating-current heating are

given in terms of heat flux for some of the more common materials used

in boiling studies. The wall thicknesses and the heat-transfer coeffi-

cients were selected to cover the range reported in recent boiling-heat-

transfer literature. The frequencies listed in the table are those most

readily available - 60 and AO0 cycles per second. The properties of the
materials used in the calculations were taken from reference 4 for 52° F.

Selecting the properties at i000 ° F results in approximately 20-percent

reduction of the magnitudes.

As an example of the use of table II, consider a nickel test-section

wall 0.012 inch thick. If the test section is to be heated by GO-cycle

alternating current and a heat flux of 107 Btu/(hr)(sq ft), the tempera-

ture variation at the boiling surface is 120 ° F, assuming a heat-transfer

coefficient of 8000 Btu/(hr)(sq ft)(°F). This is of the same order of

magnitude as the mean wall superheat. By increasing the wall thickness

to 0.036 inch_ the temperature variation is decreased to AI ° F for the

same heat flux. By increasing the frequency to 400 cycles per second,
this value is further reduced to 5.4 ° F.

This example illustrates that an increase in frequency or wall

thickness will result in smaller temperature oscillations. However;

these modifications may not always be feasible, since an increase in

wall thickness requires higher currents for the same power input_ while

the use of higher freguency current may result in excessive cost.

!
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SUMMARY OF RESULTS

The results of this analysis can be summarized as follows:

i. A solution was obtained for complete temperature history and

profile of a semi-infinite sinusoidally heated flat plate with constant

thermal and electric properties.

2. Computed magnitudes of the uniform temperature oscillations due

to a sinusoidal heat source (a.c.) are presented graphically for a wide

range of frequency and heat-transfer parameters at both the insulated

and the heat-transfer surfaces.

3. Large steady-state temperature oscillations can result in the

wall at high heat fluxes due to alternating-current heating. A table
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is presented giving the magnitudes of the oscillations at the heat-

transfer surface in terms of heat flux for some of the materials most

commonly used in boiling-heat-transfer investigations.

4. The magnitudes of the uniform temperature oscillations can be

assumed independent of position in the wall, with negligible error, if

Biot modulus is less than 0. i. In this range, the assumption of infinite

conductivity in the wall is valid. An expression is given relating the

magnitudes of the temperature oscillations at the two surfaces of the

wall, which indicates that the magnitudes at the heat-transfer surface

are always smaller than those at the insulating surface.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, April 13, 1962
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AP_NDIX A

A

C1,C2,.

Cp

F

h

h*

Ieff

i

k

L

M

N

q

q111

R

r i

r
o

T*

t

•,Cn

SYMBOLS

mean heat-transfer area of tube, _(r o + ri)L , sq ft

integration constants

specific heat, Btu/(ib)(°F)

function defining time-dependent heat generation

heat-transfer coefficient, _tu/(hr)(sq ft)(oF)

heat-transfer parameter, hl/k, or Blot modulus, dimen-

sionless

effective current, amp

instantaneous current_ amp

thermal conductivity, Btu/(hr)(ft)(°F)

length of tube, ft

thickness of plate or tube wall, ft

designation of a function of x only

designation of a function of T only

heat flow, Btu/hr

heat generation per unit volume, Btu/(hr)(cu ft)

electrical resistance, ohms

inside radius of tube, ft

outside radius of tube, ft

temperature parameter defined as (t - t )k/(q/A)_, di-

mensionless

temperature parameter corresponding to constant-heat-

generation case; dimensionless

temperature, OF

I

-4
-4
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tz

t*

temperature at heat-transfer surface, OF

temperature parameter corresponding to steady-state case,

(t - t_)k

(q/A)Z , dimensionless

H
!

t_

tmax-tmin

AT _

u _

V *

x

x _

h n

P

'12

0

U3

d3"_

Subscript s :

max

min

ambient temperature, OF

magnitude of uniform temperature oscillation, OF

temperature magnitude parameter, (T_a x - T_in) or

(tma x - tmin)k
, dimensionless

(q/A) _

function of x* only

function of x* and T*

distance from insulated surface, ft

distance parameter defined as x/S, dimensionless

positive roots of equation h tan h = h*

constant

density_ ib/cu ft

time, hr

time parameter defined by _T, radians

arbitrary time parameter, radians

frequency of sinusoidal heat source, radians/hr

frequency parameter defined by _pCpZ2/k, dimensionless

maximum

minimum
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APPENDIXB

METHODANDVERIFICATIONOFSOLUTION

Method

As shownin the ANALYSISsection (eq, (5)) the physical problem may
be expressed in nondimensional form as

82T* e. ST*
8x.2 t_ = -2 sin2T* (BI)

!

with the boundary conditions:

= 0 at x* = 0

ST* -h'T* at x* = 1

at T* > 0

and initial condition

T* = 0 at T* = 0 for all x*

As the first step in solving equation (BI), its right side will be

made constant. This is equivalent to the physical case of constant heat

generation. A solution to this simplified equation will then be obtained

by assuming a stun of steady-state and transient (time-dependent) solu-

tions. Finally, by applying Duhamel's theorem an expression for T*

will be derived, which will satisfy equation (B1) and its boundary and

initial conditions.

Thus, assuming constant heat generation, equation (BI) becomes

_* t_ = -1
8x .2

(B2)

with boundary and initial conditions unchanged and where T_ is the

temperature parameter for the constant-heat-generation case.

For steady state, equation (B2) reduces to

(B3)
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with

dt *
--= 0 at x*= 0
dx*

F_

!

and

dt*
-- = -h't* at x* = i
dx*

where t* is a dimensionless temperature for the steady-state case.

The solution of equation (BS) is

t* - i (2 + h*- h*x .2) (B4)
2h*

As suggested in reference 5, let the solution of equation (B2) be of the

form

T_ = u* + v* (B5)

where u* and v* are the steady-state and transient solutions_ re-

spectively. Equation (BS) then becomes

i (2 + h* - h*x .2) + v* (B6)

Substituting into equation (B2) yields

b2v * by*

_x .2

with the boundary conditions

_V _

_-_ = 0 at x* = 0

and

8v*

and the initial condition

_* = - z-i-(2 + h* - h'x*2)
2h*

at x* = i

at T*= 0
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A solution for
variables. Let

Therefore,

v* from equation (BY) maybe obtained by separating the

v*(x*,_*): MCx*)_(_*)

M"(x*)_(_*) - _*M(x*)N'(_*) = o

where the primes denote the derivatives; or,

_ = _*_= constant =

If _ were positive, the temperature of the plate would become in-

finite with time. If _ were zero, then the function expressing the

time dependence of the temperature would be a constant. Since both of

these possibilities violate the physical conditions of the problem,

must be negative. For convenience _ is defined:

= _k 2

Hence,

M"(x*)+ _2MIx*)= o

and

k2

N'(_*)+_(_*) = o

' I

or

M(x*) = Ci cos kx* + C 2 sin hx*_

and _ (BS)
N(_*) = Cse-_2T*/_*

M'(x*) = -kC 1 sin kx* + kC 2 cos kx* (Bg)

From the first boundary condition of equation (B1) it can be noted that

M'(o)= o= _cz
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But,

Therefore,

C2 = 0

Thus using equation (BS) and letting C 4 = CIC 5 result in

V*(X*,T*) M(x*)N(T*) = C%e -_2T*/_*= COB X _

The second boundary condition of equation (B1) yields:

M'(1)N(_*) = -h_*(1,_*)

Substituting equation (BS) for T_(!) yields

=

But from equation (BI0),

Hence,

=

M'(1) --

Noting that C 2 = 0 and evaluating this by using equations (BS) and

(Bg) for x* = 1 yield

(BIO)

Equation (BII) has an infinite number of roots. The roots suffi-

cient for most computations are given in table I for a number of values

of h*. It was shown previously that _ _ O; hence, a value of k = 0

may be disregarded. Thus, equation (BlO) may be rewritten as

oo

V*(X*,T*) = Z Cne

n=l

cos hnX* (BI2)

where kn designates all the positive roots of equation (Bll). The

constants in equation (B12) are obtained as follows:

k tan _ = h* (BII)
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Using the initial condition in equation (BI2) gives

oo

v*(x*,O) = Z Cn cos Xn x* = - --

n=l

z (2 + h* - h-x*2) (m3)
2h*

Multiplying both sides by cos Xjx*, integrating over the interval

O ! x* _ i, and interchanging the order of integration and summation

yield

OO

Z Cn _0 "I

n=l

cos hnX* cos hjx* dx*

(2 + h* - h*x*2)cos hjx* dx* (BI4)

Integrating by parts twice shows that

_0 1 cos hjx* cos hnX* dx* = 0
if hn _ hj

Therefore, all the terms in the series are zero except for n = J; hence

(B14) becomes

l /!Cj / cos2kjx * dx* = i
(2 + h* - h*x*2)cos hjx* dx*

Integration, rearrangement, and use of equation (BII) yield

2 sin hj

Cj = - 2

_j(1 sin 2hj + _j)

(BI5)

Combining equation (BIS) with equation (BI2) gives

oo

v*(x*,_*) : -2 2 1
>'n sin 2_ n + h n

n=l

cos hnX* (BI6)

I
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Bysubstituting equation (B16) in equation (B8) an expression for T_c

is obtained. Thus,

i i x.2 _ sin hn _h2nT./c0.
Tc* = h"_ + 2- - 2 2 2(_ ) e cos knX*h n sin 2kn + hn

n=l

(B17)

Equation (BI7) is the solution for the unsteady case with constant

heat generation represented by equation (B2). Since the heat generation

is a function of time, say F(_*), a solution to equation (B1) can be

derived by the use of Duhamel's theorem, which implies:

0

From equation (BI),

F(T_) :-2 sin2T_ = cos 2T*- 1 (BI9)

and from equation (BI7),

oo

2 _ sin hn cos hnX* _Z2n(T._T_)/_*

j. _._ y ...... esin 2k n + hn

n=l

Substituting equations (BI9) and (B20) into equation (BIB) gives

co

 o/T sincoseT*(x*,T*) : 2 (1-COS 2T_) 1 sin 2k n + kn
2

n=l

(B20)

dT*
O
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Integrating and rearranging finally yield

si(;)_n cos _n x* ) _
_n sin 2hn + kn

- + +
(_2x)

[-4
!

-.q

-.j

Equation (B21) is a series solution of the original differential equa-

tion (B1). The eigenvalues Zn can be determined from the characteris-

tic equation k tan k = h*.

Verification

Repeated differentiation of equation (B21)_ substitution into equa-

tion (5), and some algebraic manipulation give

oo

i _ sin kn

L= ½ sin 2h n + hn

n=l

cos knX* (B22)

Hence, equation (B21) _atlsfies the given differential equation (5) if,

and only if, the right side of equation (B22) converges to 1/2. The ap-

pearance of eigenvalues makes the analytical proof of convergence diffi-

cult. However, an IBM 704 digital computer _as utilized to evaluate the

series terms of equation (B22) for a number of values of h* and x*.

For all cases tested the right-side term did converge to 1/2, indicating

that equation (B22) is an identity.

To show that equation (B21) satisfies the boundary conditions,

differentiate it, which will result in

ST* Z -kn(2__slnhn sin kni

_-_ = 2 2 1 - e-X2nT*/_°*
kn sin 2 hn + kn

n=l

(B25)
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It follows from equation (B25) that

ST*

x_ = 0 at x* = 0 for T* > 0

Evaluating equation (B23) at x* = 1 gives

o0

2 _ hn tan kn sin kn cos kn

n=l
h2n(1 sin 2Zn + kn)

II 2+ 4oo* os 2T* + _ sin 2T* -
hn

(B24)

Recalling that h* = h tan h, equation (B24) reduces to

ST*

_-_ = -h'T* at x* = i for T* > 0

By inspection of equation (B21), it is evident that

T* = 0 at T* = 0 for all x*

Thus, equation (B2i) satisfies the given differential equation along

with the boundary and initial conditions.
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TABLE I.

h* hl

O. 001 O. 03162

.002 .041171

•005 .07085

.Ol .99830

.02 .14095

•05 .22176

.1 .51105

.2 .43284

•5 .65327

1.0 .86035

2.0 1. 07687

5.0 1. 51384

I0.0 i. 42887

20.0 1. 49615

oo i. 57080

- ROOTS OF EQUATION: h* = _ tan h

k2

3.14318

5.14477

3.14795

3.15745

3.17310

3. 20393

5.29251

5.42562

5.64360

4.05557

4. 50580

4. 49148

4. 71259

_3

6.28478

6.28657

6.29113

6.29906

6. 31485

6. 36162

6. 43750

6. 57853

6.90960

7.22811

7.49541

7. 85399

9. 42690

9. 43008

9. 43538

9. 44595

9. 47748

9. 52935

9. 62956

9. 89275

i0. 20026

i0. 51167

i0.99557

k5

12. 56796

12. 57035

12. 57432

12. 58226

12. 60601

12. 64529

12. 72250

12. 95522

13. 21418

13. 54198

14. 15717

k 6

15. 71115

15. 71433

15. 72068

15. 73972

15. 77128

15. 85361

16. 01066

16.25936

16. 58640

17.27876
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